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Abstract
It is shown that a recently conjectured form for the critical scaling function
for planar self-avoiding polygons weighted by their perimeter and area also
follows from an exact renormalization group flow into the branched polymer
problem, combined with the dimensional reduction arguments of Parisi and
Sourlas. The result is generalized to higher-order multicritical points, yielding
exact values for all their critical exponents and exact forms for the associated
scaling functions.

PACS numbers: 05.10.Cc, 82.70.Uv, 11.10.Kk, 11.30.Pb, 02.30.Xx

In two dimensions, exact results for critical exponents, which describe a power law dependence
on a single relevant variable close to a critical point, are commonplace. By contrast, very few
examples are known of exact scaling functions which depend on combinations of more than
one such variable. In recent years there has been considerable progress in problems involving
counting various restricted classes of random self-avoiding polygons [1]. However, these are
essentially one dimensional in nature, and so far no rigorous results exist for the unrestricted
case. Theoretically this latter case is perhaps more interesting because, in the scaling limit,
it corresponds to an isotropic field theory, the n → 0 limit of the O(n) model. While much
exact information is known about such critical theories in two dimensions, up to now no exact,
nontrivial, scaling functions of more than one intensive thermodynamic variable (such as the
equation of state) have been found.

Recently Richard et al [2] (hereinafter referred to as RGJ) have conjectured the exact
form of such a scaling function for unrestricted self-avoiding polygons in the plane. In the
ensemble in which each link of the polygon is weighted with fugacity x, this problem exhibits
a critical point at some value x = xc. As x → xc from below, the mean perimeter 〈N〉, mean
square radius of gyration 〈R2〉 and mean area 〈A〉 all diverge. Such self-avoiding loops (SALs)
provide a simple model for two-dimensional vesicles [3], and in that context it is natural to
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weight the ensemble according to the area of each loop, thus defining the generating function
for rooted loops

G(r)(x, g) =
∑
N,A

p
(r)
N,Ax

Ne−gA

where p(r)N,A is the number of such loops of a given perimeter and area which pass through a
given link of the lattice, and g (≡ − ln q in the notation of RGJ) is the pressure difference
across the vesicle wall, in units of kT . From the point of view of critical phenomena, this
ensemble has a multicritical point at x = xc, g = 0, and in its neighbourhood one expects [3]
that the singular part of G has the scaling form (in the notation of RGJ)

G
(r)

sing(x, g) = gθ F (
(xc − x)g−φ) (1)

where θ and φ are related to the conventional exponents ν and α by θ/φ = 1−α and φ = 1/2ν,
based on the assumptions that, at g = 0, the singular part of the mean number of such rooted
loops behaves like (xc − x)1−α and the mean area 〈A〉 ∼ 〈R2〉 ∼ (xc − x)−2ν ∼ 〈N〉2ν .
In addition α is related to ν by hyperscaling: α = 2 − 2ν. There is ample evidence from
enumeration and other methods [4] to support these assumptions and the theoretical value [5]
ν = 3

4 , so that θ = 1
3 and φ = 2

3 .
RGJ, in analogy with similar but analytically tractable enumeration problems [1], assume

that, as a function of x and q = e−g , G(r) satisfies some q-algebraic functional equation of
finite degree. Together with the assumed values for θ and φ, this leads, in the limit q → 1, to
a Riccati equation for the scaling function F(s), whose solution is

F(s) = b0
d

ds
ln Ai (b1s) (2)

where Ai(x) ∝ ∫ ∞
−∞ eixt+it3/3 dt is the Airy function, and b0, b1 are non-universal constants.

Equation (2) determines exactly, for example, the universal moment ratios 〈Ap〉/〈A〉p as
x → xc, and RGJ produce convincing evidence, based on extensive enumerations, that these
predictions are indeed correct.

In this Letter, it is pointed out that (2) also follows from a completely different argument,
which invokes the physical reasoning of [3] to relate this problem to that of branched polymers,
combined with the dimensional reduction arguments of Parisi and Sourlas [6], which map this
latter problem to that of the Yang–Lee edge singularity in two fewer dimensions. From this
point of view, the Airy integral then arises as the scaling limit of the partition function of the
Yang–Lee problem in zero dimensions. Moreover, in this approach, the values of the exponents
θ and φ emerge without any further assumptions.

From this perspective it is simple to generalize the conjecture of RGJ to higher-order
multicritical points of SALs with k relevant renormalization group (RG) scaling variables vj .
These may presumably be realized by tuning to critical values many-body interactions between
nearby portions of the loop. When this ensemble is, in addition, weighted by the area of the
loops, the generalization of (1) to arbitrary k is

G
(r)

sing = gθk Fk(v1g
−y1/2, v2g

−y2/2, . . .) (3)

where yj is the RG eigenvalue of vj . It will be argued that the exact values for these, at the
kth-order multicritical point, are

yj (k) = 2(k − j + 2)/(k + 2) (4)

and that the exact form for Fk is given in terms of a generalized Airy integral
∫
C

e−V (ψ)/gdψ
where V (ψ) = ∑k

j=1 vjψ
j − ψk+2. The values given in (4) agree with those derived from

a generalized Flory argument, applied to an ensemble in which the first k renormalized virial
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coefficients vanish. That they should be exact in two dimensions was suggested earlier by
Saleur [7] on the basis of a postulated N = 2 supersymmetry. Here it is seen that they follow
from the mapping to a simple zero-dimensional problem. However, our results, like those of
Saleur, display a paradox in that k = 2, the obvious candidate for the -point, yields values for
the exponents which disagree with those of an exactly solvable model [15] and with extensive
numerical results. This is discussed in detail later.

Finally, in the generalized Airy integral it is possible to take the limit g → 0, thus
recovering the scaling function in the original ensemble with no area-weighting. This comes
from the appropriate saddle-point of V (ψ), and therefore amounts to finding the root of a
polynomial. For example, for k = 2 it is found that G(r)sing = c0v

1/2
2 "(c1v1/v

3/2
2 ), where c0

and c1 are non-universal constants, and the exact scaling function, for v2 > 0, is

">(s) = (
s + (s2 − 1)1/2

)1/3
+

(
s − (s2 − 1)1/2

)1/3
(5)

where the branch cuts of the fractional powers are taken to lie along the negative real axis.
We now give more details of the reasoning leading to these results, first discussing the

case k = 1 considered by RGJ. The physical part of the argument is to regard the model with
g > 0 as presenting a crossover phenomenon: the negative pressure causes the vesicles to
try to minimize their area, but there is competition between this and the need to maximize
the perimeter as x → xc. Clearly for large g at fixed x < xc the vesicles should collapse
into double-walled, branched structures, but assume, as suggested by the numerical work
of [3] that, at large enough distance scales, this will also happen as x → xc for any fixed
g > 0, consistent with the idea that there is an RG flow from the fixed point describing SALs
to that corresponding to branched structures. Thus (1) has the form of a crossover scaling
function [8]. We also assume that the structures which result are in the same universality class
as conventional branched polymers (lattice animals with no cycles), in which all trees with the
same total length are weighted equally. The theory of crossover scaling [8] then asserts that
the scaling function F(s) in (1) should have a singularity of the form (s − s∗)1−αBP , where
αBP is the entropic exponent for branched polymers. From this hypothesis various interesting
results follow, for example that as g → 0 the branched polymer singularity should occur at
x = xc(g) = xc + s∗gφ + · · · , which has been confirmed in enumeration studies [3], as well as
various predictions for the g-dependence of the critical amplitudes. In general, however, the
functional form of a crossover function is very difficult to calculate, since the scaling variables
at the new fixed point bear a complicated relationship to the original ones, which requires
following the RG flow in detail. However in this example there are considerable simplifications.

First state the problem in field-theoretic language, by writing the area of a given loop as

A =
∫ ∫

Gλσ (r1 − r2)Jλ(r1)Jσ (r2) d2r1 d2r2 (6)

where Jλ is the density of a current of unit strength flowing around the loop, and Gλσ is the
Green function for a U(1) gauge field A. Equation (6) expresses the well known fact that, in a
two-dimensional gauge theory, the expectation value of a Wilson loop obeys a strict area law.
In [9] it was used to compute the mean area of SALs. The generating functionG(r) for rooted
loops is the derivative with respect to the fugacity x of

Z = 〈e−gA〉SAL = 〈
e−√

g
∫
JλAλd2r

〉
SAL,A

where the average is taken over SALs, each weighted by xN , and over the gauge field, with
the usual weight exp (− 1

4

∫
FλσFλσ d2r). SALs may be mapped, in the standard way, to the

n→ 0 limit of an O(n) model. In this case it is useful to consider complex O(n) lattice spins
s(r), so that theU(1) current Jλ is the lattice version of (1/2i)(s∗ ·∂λs−c.c.), and the weights
are

∏
nn(1 + x(s∗(r) · s(r ′) + c.c.)).
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The first observation is that, at n = 0, there are no vacuum corrections to the gauge field
propagator Gλσ (as in the ‘quenched’ approximation in lattice gauge theories), so that, since
A couples to a conserved current, the gauge coupling g is not renormalized. Its RG equation
is simply dg/d+ = 2g to all orders, so that it flows to infinity, where the irrelevant variable
g−2 has RG eigenvalue −2. The other simplification is that, in the limit where g is large, the
total length of the branched polymer is one-half that of the perimeter of the loop, apart from
corrections o(N). Thus the fugacity variable for the branched polymer problem, close to xc,
is linearly related to the original fugacity x.

Now recall the formulation of the branched polymer problem in d dimensions, given by
Parisi and Sourlas [6]. This is the n→ 0 limit of a theory of fieldsψa (a = 1, . . . , n), weighted
by e−S where

S =
∫ ( ∑

a

(
1
2 (∇ψa)2 −

∑
p�1

upψ
p
a

)
+ v

∑
ab

ψ2
aψ

2
b

)
ddr (7)

where up is the fugacity for p branches to meet at a given point, and v > 0 represents self-
avoidance. After shifting the fields to eliminate the ψ2

a term, rescaling and retaining only the
most relevant couplings, the action takes the form

S =
∫ ( ∑

a

( 1
2 (∇ψa)2 + V (ψa)) +0

∑
ab

ψaψb

)
ddr (8)

where V (ψ) = tψ − 1
3ψ

3 + O(ψ4). This theory is critical at some value t → tc+.
Parisi and Sourlas [6] argued that, at n = 0, (8) is equivalent to a supersymmetric theory.
We follow the more direct transformation of [10]: define new combinations of the fields
ψ ≡ 1

2 (ψ1 + (n − 1)−1 ∑n
2 ψa), ω ≡ 0(ψ1 − (n − 1)−1 ∑n

2 ψa), together with n − 2 other
fields χa (a = 3, . . . , n) which are linear combinations of (ψ2, . . . , ψn) orthogonal to

∑n
2 ψa .

Discarding terms higher than quadratic order in ω and the χa (which may be shown to be
irrelevant), the action has the form, at n = 0,

S = 1

0

∫ (
ω(−∇2ψ + V ′(ψ))− ω2 +

∑
a

χa(−∇2 + V ′′(ψ))χa

)
ddr. (9)

The integral over the n−2 commuting fields χa yields det(−∇2 +V ′′)−(n−2)/2 and so they may
be replaced atn = 0 by two anticommuting fieldsχ andχ . The supersymmetry is made explicit
by introducing anticommuting coordinates (θ, θ) and a superfield3 ≡ ψ+ 1

2 (θχ+θχ)− 1
4θθω,

whence S may be written

S = 1

0

∫ (
1

2
3(−∇2

SS)3 + V (3)

)
ddr dθ dθ (10)

where ∇2
SS = ∇2 + 4∂2/∂θ∂θ . This exhibits supersymmetry under rotations which leave

r2 + θθ invariant. Parisi and Sourlas [6] argued that this theory exhibits a remarkable property
of dimensionality reduction (for a nonperturbative proof see [10]): correlation functions whose
arguments are restricted to a (d − 2)-dimensional subspace are the same as those for a non-
supersymmetric theory in d − 2 dimensions, whose action is

SYang–Lee = 1

0

∫ (
1

2
ψ(−∇2)ψ + V (ψ))

)
dd−2r (11)

where in this case V (ψ) = tψ − 1
3ψ

3. There is one subtlety: before dropping the irrelevant
terms, the contour in ψ should be rotated, in this case parallel to the imaginary axis, so as
to make the integral defined nonperturbatively. The potential therefore becomes itψ + 1

3 iψ3.
Thus (11) is just the action for the scaling theory of the Yang–Lee edge singularity [11], as
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discussed by Fisher [12]. From (10) it is seen that 0 has dimension (length)−2 and this is not
affected by loop corrections, otherwise supersymmetry would be broken (this is presumably
what happens in the random field Ising model, where dimensional reduction fails). It flows to
infinity under the RG, and0−1 is irrelevant. However, it is a classic example of a dangerously
irrelevant variable: it cannot be set equal to zero in the scaling theory. It is responsible for the
modified hyperscaling relation 2 − αBP = (d − 2)νBP.

Based on the above considerations, it is reasonable to conjecture that, up to possible
constants, 0 and g should be identified, as should xc − x and t (the above argument implies
only that t ∝ x0 − x, but in fact x0 = xc for consistency with equation (1)). Thus,
apart from non-universal constants, G(r)sing is given by the one-point function 〈3〉 in the
supersymmetric theory (10), which, by dimensional reduction, is the same as the one-point
function 〈ψ〉 in the Yang–Lee scaling theory (11). For d = 2 the gradient terms are absent, so
G
(r)

sing(x, g) = b1(gd/dx) lnZ1 where

Z1 =
∫ i∞

−i∞
e(b2/g)(−(xc−x)ψ+ 1

3ψ
3) dψ

and b1 and b2 are non-universal constants. After rescaling the integration variable, this gives
the main results (1), (2) of RBG, together with the values θ = 1

3 , φ = 2
3 for the exponents.

According to (2), the scaling function F(s) has singularities at the zeros of the Airy
function, which lie on the negative real axis. The closest to x = 0 lies at xc(g) =
xc + (2.388 . . .)(g/b2)

2/3, governing the asymptotic behaviour ∼xc(g)
−N of

∑
A p

(r)
N,Ae−gA

as N → ∞, for fixed small g. This singularity is a simple pole, corresponding to the value
αBP ≡ 3 − θBP = 2. All this agrees with general crossover theory [8] that the scaling function
should exhibit the critical singularities of the stable fixed point.

We now discuss the generalization to area-weighted two-dimensional SALs at higher-
order multicritical points. The additional interactions between nearby portions of the SAL
will modify the parameters up in (7). As long as the truncation of terms leading to (9) remains
valid, the dimensional reduction argument still applies with a modfied potential V , so that the
rooted generating function is still given by the logarithmic derivative of a generalized Airy
integral of the form

∫
C

e−V (ψ)/g dψ . The obvious candidates for potentials which then yield

multicritical behaviour in the limit g → 0 have the form V (ψ) = ∑k
j=1 vjψ

j − ψk+2 (the
coefficient of ψk+1 is redundant, as it can be removed by a shift in ψ). Here v1 is linear in
xc − x, and one can check that the other coefficients vj should be positive deep inside the
single-phase region. (Note that this form for V does not directly correspond to a multicritical
point in the branched polymer ensemble when g > 0: the generalized Airy functions are
still entire, so in general the branched polymer critical point will still come from its first zero,
yielding αBP = 2 as before. On the other hand, at the branched polymer collapse point it is
believed [13] that α = 1. This change of behaviour might be explained by a singularity in the
Parisi–Sourlas mapping, rather than a critical point in V .)

Repeating the above analysis then leads to the resultG(r)sing(vj , g) = g(d/dv1) lnZk where

Zk =
∫
C

e−
(∑k

j=1 vjψ
j−ψk+2

)
/g dψ (12)

with the contour C chosen to guarantee convergence. Comparing with the scaling form (3)
then gives the results (4), together with θk = 1/(k + 2). In particular 〈R2〉 ∼ 〈N〉2νk , where
νk = 1/y1(k) = (k + 2)/2(k + 1). It should be noted that, although these exponent values are
based on extremizing a simple polynomial, they are not the same as those in Landau theory,
in which the analogous potential would be

∑k
j=1 vjφ

2j + φ2(k+1).
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Finally, the limit g → 0 may be taken in (12), using the saddle-point method, with the
result thatG(r)sing is simply given by a zero ofV ′(ψ). By considering the limit when all the vj are
large and positive, it may be shown that the correct zero in this single-phase region is that on
the real axis with the largest real part. The contour is to be run through this, locally parallel to
the imaginary axis. Thus, near the k = 2 multicritical point, where V (ψ) = v1ψ +v2ψ

2 −ψ4,
one finds the result (5), as the appropriate root of a cubic equation. This formula has a number
of interesting properties. At v2 = 0, G(r)sing behaves like (xc − x)1/3. For fixed v2 > 0, the first

singularity occurs not at s = 1, but at s = −1, and this is a square root: G(r)sing ∼ (xc(v2)−x)1/2,

where xc(v2)−xc(0) ∼ v3/2
2 , all as expected on the basis of crossover theory. When v2 < 0, the

corresponding scaling function is"<(s) = (
(s2 +1)1/2 +s

)1/3 −(
(s2 +1)1/2 −s)1/3

, where now
s = v1/(−v2)

3/2. The other two roots remain complex, and there is now a first-order transition
at s ≈ 1.6, when ReV has the same value at each root. Note that"<, continued into the phase
coexistence region, is analytic near the real axis and does not exhibit a spinodal singularity.

However, there is a puzzle, which our theory has in common with that of Saleur [7], associ-
ated with the physical identification of this multicritical point. The generalization of the Flory
approximation [14] to the and higher-order multicritical points, at which the first k renormal-
ized virial coefficients vanish, may be phrased as follows: consider a long loop of lengthN and
linear sizeR. In the absence of interactions, its entropy may be estimated on the basis of a free
random walk to be O(R2/N). The mean density is O(N/R2), so that the interaction energy
may be approximated by vk+1N(N/R

2)k , where vk+1 is the first non-vanishing virial coefficient.
Balancing these two contributions to the free energy then givesR ∼ Nνk with νk as above. This
argument, combined with observation that at the kth multicritical point there should be exactly
k relevant parameters, suggests that k = 2 in our theory should be identified with the -point,
and that, because of the simple scaling associated with the dimensionally reduced theory, the
Flory result is in fact exact. However, the value ν2 = 2

3 , and the associated crossover exponent
y2(2)/y1(2) = 2

3 , do not agree with the predictions of an exactly solvable model of Duplantier
and Saleur [15], for which the corresponding values are 4

7 and 3
7 . While it might be argued that

this model is somewhat special, extensive numerical studies of more generic lattice models ap-
pear to confirm these values [16]. Even more strikingly, the supposedly correct value for ν at the
 -point actually corresponds to k = 6 in our theory (and that of Saleur), and the crossover ex-
ponent corresponds to a perturbation with j = 5. But this relevant perturbation should lead to a
multicritical point with k = 3, not the usual one with k = 1 as expected on the physical grounds
for the -point. This same paradox was present in Saleur’s theory [7] and at present there seems
to be no plausible resolution. It may well be that the coincidence of the -point exponents with
k = 6 is merely that, and that the sequence of multicritical points of SALs implied by Saleur’s
and the present theory represents some completely different physics. Unfortunately, because
of the truncations made in going from the original SAL model to the generalized Airy integral,
it is very difficult to say to what these other multicritical points might correspond physically.

To summarize, the conjectured scaling function of Richard et al [2] for area-weighted
self-avoiding polygons has been shown to follow from physical reasoning concerning the
crossover to branched polymers, together with the dimensional reduction argument of Parisi
and Sourlas [6]. Depending on one’s point of view, the numerical confirmation of this formula
found by RGJ could be taken as dramatic vindication of the dimensional reduction argument,
beyond its simple prediction of the value of the entropic exponent αBP = 2. The exact formula
for the scaling function is in accordance with standard crossover theory [8], but it points to the
importance of understanding all the singularities of the crossover scaling function, not just the
physical ones, in building up the full scaling form.



Letter to the Editor L671

The formula proposed by RGJ is just the first of a series of exact scaling functions
describing higher-order multicritical points for SALs weighted by their area. Moreover
this approach enables one to recover exact results for scaling functions in the unweighted
ensemble, and these have the form of algebraic functions. These are the first examples of
exact but nontrivial scaling functions of more than one thermodynamic variable at isotropic
critical points.

One might ask whether the present analysis throws any light on the central assumption of
Richards et al [2] that the generating function satisfies a q-algebraic equation. Since the latter
is essentially a lattice property, there appears to be no direct implication. One way to study this
further would be to determine whether the forms of the corrections to scaling allowed by the
field-theoretic approach are consistent with those implied by the existence of such an equation.

The simple structure found here is analogous to that which appears in N = 2
supersymmetric theories in two dimensions, although in this case the supersymmetry is of
a different nature. From that point of view the multicritical points of SALs correspond to
the Ak+1 series of simple singularities [17] of the potential V : it would be interesting to find
analogues of the Dk+1 series, and the exceptional cases.

The author thanks the authors of [2] for sending a draft copy of their paper prior to publication,
and A Owczarek and H Saleur for their comments on an earlier version of this manuscript. This
research was supported in part by the Engineering and Physical Sciences Research Council
under grant GR/J78327.

After this Letter was written I was made aware of the important recent work of Brydges and
Imbrie [18], in which they show that a particular model of branched polymers inD dimensions
maps rigorously onto that of a hard-core gas (at negative fugacity) in D − 2 dimensions, and
thence to a cut-off version of the field theory used in the present work, with a particular form
for the potential V .
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